Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Comparison of HgCdTe and quantum-well infrared photodetector dual-band focal plane arrays

Identifieur interne : 00C784 ( Main/Repository ); précédent : 00C783; suivant : 00C785

Comparison of HgCdTe and quantum-well infrared photodetector dual-band focal plane arrays

Auteurs : RBID : Pascal:03-0016835

Descripteurs français

English descriptors

Abstract

We report on results of laboratory and field tests of dual-band focal plane arrays (FPAs) in the medium-wave infrared (MWIR) and long-wave infrared (LWIR), produced under the Army Research Laboratorys Multidomain Smart Sensor Federated Laboratory program. The FPAs were made by DRS Infrared Technologies using the HgCdTe material system, and by BAE Systems using quantum-well infrared photodetector (QWIP) technology. The HgCdTe array used the DRS HDVIP<TM> process to bond two single-color detector structures to a 640×480-pixel single-color readout integrated circuit (ROIC) to produce a dual-band 320×240 pixel array. The MWIR and LWIR pixels are co-located and have a large fill factor. The images from each band may be read out either sequentially (alternating frames) or simultaneously. The alternating-frame approach must be used to produce optimal imagery in both bands under normal background conditions. The QWIP FPA was produced using III-V materials grown by molecular-beam epitaxy (MBE). The LWIR section consisted of GaAs quantum wells and AlGaAs barriers, and the MWIR section used InGaAs quantum wells with AlGaAs barriers. The detector arrays were processed with three ohmic contacts for each pixel, allowing for independent bias control over both the MWIR and LWIR sections. The arrays were indium bump-bonded to an ROIC (specifically designed for two-color operation), which puts out the imagery from both bands simultaneously. The ROIC has variable gain and windowing capabilities. Both FPAs were tested under similar ambient conditions with similar optical components. The FPAs were subjected to a standard series of laboratory performance tests. The advantages and disadvantages of the two material systems for producing medium-format dual-band FPAs are discussed. © 2003 Society of Photo-Optical Instrumentation Engineers.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:03-0016835

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Comparison of HgCdTe and quantum-well infrared photodetector dual-band focal plane arrays</title>
<author>
<name sortKey="Goldberg, Arnold C" uniqKey="Goldberg A">Arnold C. Goldberg</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>U. S. Army Research Laboratory, Adelphi, Maryland 20783</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
<wicri:cityArea>U. S. Army Research Laboratory, Adelphi</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Kennerly, Stephen W" uniqKey="Kennerly S">Stephen W. Kennerly</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>U. S. Army Research Laboratory, Adelphi, Maryland 20783</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
<wicri:cityArea>U. S. Army Research Laboratory, Adelphi</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Little, John W" uniqKey="Little J">John W. Little</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>U. S. Army Research Laboratory, Adelphi, Maryland 20783</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
<wicri:cityArea>U. S. Army Research Laboratory, Adelphi</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Shafer, Thomas A" uniqKey="Shafer T">Thomas A. Shafer</name>
<affiliation wicri:level="2">
<inist:fA14 i1="02">
<s1>DRS Infrared Technology, Dallas, Texas 52104</s1>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Texas</region>
</placeName>
<wicri:cityArea>DRS Infrared Technology, Dallas</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Mears, C Lynn" uniqKey="Mears C">C. Lynn Mears</name>
<affiliation wicri:level="2">
<inist:fA14 i1="02">
<s1>DRS Infrared Technology, Dallas, Texas 52104</s1>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Texas</region>
</placeName>
<wicri:cityArea>DRS Infrared Technology, Dallas</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Schaake, Herbert F" uniqKey="Schaake H">Herbert F. Schaake</name>
<affiliation wicri:level="2">
<inist:fA14 i1="02">
<s1>DRS Infrared Technology, Dallas, Texas 52104</s1>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Texas</region>
</placeName>
<wicri:cityArea>DRS Infrared Technology, Dallas</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Winn, Michael" uniqKey="Winn M">Michael Winn</name>
<affiliation wicri:level="2">
<inist:fA14 i1="03">
<s1>BAE Systems, Nashua, New Hampshire 03060</s1>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">New Hampshire</region>
</placeName>
<wicri:cityArea>BAE Systems, Nashua</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Taylor, Michael" uniqKey="Taylor M">Michael Taylor</name>
<affiliation wicri:level="2">
<inist:fA14 i1="03">
<s1>BAE Systems, Nashua, New Hampshire 03060</s1>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">New Hampshire</region>
</placeName>
<wicri:cityArea>BAE Systems, Nashua</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Uppal, Parvez N" uniqKey="Uppal P">Parvez N. Uppal</name>
<affiliation wicri:level="2">
<inist:fA14 i1="03">
<s1>BAE Systems, Nashua, New Hampshire 03060</s1>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">New Hampshire</region>
</placeName>
<wicri:cityArea>BAE Systems, Nashua</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">03-0016835</idno>
<date when="2003-01">2003-01</date>
<idno type="stanalyst">PASCAL 03-0016835 AIP</idno>
<idno type="RBID">Pascal:03-0016835</idno>
<idno type="wicri:Area/Main/Corpus">00E099</idno>
<idno type="wicri:Area/Main/Repository">00C784</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0091-3286</idno>
<title level="j" type="abbreviated">Opt. eng.</title>
<title level="j" type="main">Optical engineering</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aluminium compounds</term>
<term>Cadmium compounds</term>
<term>Experimental study</term>
<term>Focal planes</term>
<term>Gallium arsenides</term>
<term>II-VI semiconductors</term>
<term>III-V semiconductors</term>
<term>Indium compounds</term>
<term>Infrared detectors</term>
<term>Instrumentation</term>
<term>Mercury compounds</term>
<term>Molecular beam epitaxy</term>
<term>Ohmic contacts</term>
<term>Photodetectors</term>
<term>Quantum well devices</term>
<term>Semiconductor growth</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>0757K</term>
<term>8560G</term>
<term>8535B</term>
<term>4279P</term>
<term>8115H</term>
<term>Appareillage</term>
<term>Etude expérimentale</term>
<term>Mercure composé</term>
<term>Cadmium composé</term>
<term>Semiconducteur II-VI</term>
<term>Plan focal</term>
<term>Détecteur IR</term>
<term>Photodétecteur</term>
<term>Dispositif puits quantique</term>
<term>Semiconducteur III-V</term>
<term>Contact ohmique</term>
<term>Epitaxie jet moléculaire</term>
<term>Croissance semiconducteur</term>
<term>Gallium arséniure</term>
<term>Aluminium composé</term>
<term>Indium composé</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We report on results of laboratory and field tests of dual-band focal plane arrays (FPAs) in the medium-wave infrared (MWIR) and long-wave infrared (LWIR), produced under the Army Research Laboratorys Multidomain Smart Sensor Federated Laboratory program. The FPAs were made by DRS Infrared Technologies using the HgCdTe material system, and by BAE Systems using quantum-well infrared photodetector (QWIP) technology. The HgCdTe array used the DRS HDVIP<
<sup>TM</sup>
> process to bond two single-color detector structures to a 640×480-pixel single-color readout integrated circuit (ROIC) to produce a dual-band 320×240 pixel array. The MWIR and LWIR pixels are co-located and have a large fill factor. The images from each band may be read out either sequentially (alternating frames) or simultaneously. The alternating-frame approach must be used to produce optimal imagery in both bands under normal background conditions. The QWIP FPA was produced using III-V materials grown by molecular-beam epitaxy (MBE). The LWIR section consisted of GaAs quantum wells and AlGaAs barriers, and the MWIR section used InGaAs quantum wells with AlGaAs barriers. The detector arrays were processed with three ohmic contacts for each pixel, allowing for independent bias control over both the MWIR and LWIR sections. The arrays were indium bump-bonded to an ROIC (specifically designed for two-color operation), which puts out the imagery from both bands simultaneously. The ROIC has variable gain and windowing capabilities. Both FPAs were tested under similar ambient conditions with similar optical components. The FPAs were subjected to a standard series of laboratory performance tests. The advantages and disadvantages of the two material systems for producing medium-format dual-band FPAs are discussed. © 2003 Society of Photo-Optical Instrumentation Engineers.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0091-3286</s0>
</fA01>
<fA02 i1="01">
<s0>OPEGAR</s0>
</fA02>
<fA03 i2="1">
<s0>Opt. eng.</s0>
</fA03>
<fA05>
<s2>42</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Comparison of HgCdTe and quantum-well infrared photodetector dual-band focal plane arrays</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>GOLDBERG (Arnold C.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>KENNERLY (Stephen W.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>LITTLE (John W.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>SHAFER (Thomas A.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>MEARS (C. Lynn)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>SCHAAKE (Herbert F.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>WINN (Michael)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>TAYLOR (Michael)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>UPPAL (Parvez N.)</s1>
</fA11>
<fA14 i1="01">
<s1>U. S. Army Research Laboratory, Adelphi, Maryland 20783</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>DRS Infrared Technology, Dallas, Texas 52104</s1>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>BAE Systems, Nashua, New Hampshire 03060</s1>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</fA14>
<fA20>
<s1>30-46</s1>
</fA20>
<fA21>
<s1>2003-01</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>15166</s2>
</fA43>
<fA44>
<s0>8100</s0>
<s1>© 2003 American Institute of Physics. All rights reserved.</s1>
</fA44>
<fA47 i1="01" i2="1">
<s0>03-0016835</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Optical engineering</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We report on results of laboratory and field tests of dual-band focal plane arrays (FPAs) in the medium-wave infrared (MWIR) and long-wave infrared (LWIR), produced under the Army Research Laboratorys Multidomain Smart Sensor Federated Laboratory program. The FPAs were made by DRS Infrared Technologies using the HgCdTe material system, and by BAE Systems using quantum-well infrared photodetector (QWIP) technology. The HgCdTe array used the DRS HDVIP<
<sup>TM</sup>
> process to bond two single-color detector structures to a 640×480-pixel single-color readout integrated circuit (ROIC) to produce a dual-band 320×240 pixel array. The MWIR and LWIR pixels are co-located and have a large fill factor. The images from each band may be read out either sequentially (alternating frames) or simultaneously. The alternating-frame approach must be used to produce optimal imagery in both bands under normal background conditions. The QWIP FPA was produced using III-V materials grown by molecular-beam epitaxy (MBE). The LWIR section consisted of GaAs quantum wells and AlGaAs barriers, and the MWIR section used InGaAs quantum wells with AlGaAs barriers. The detector arrays were processed with three ohmic contacts for each pixel, allowing for independent bias control over both the MWIR and LWIR sections. The arrays were indium bump-bonded to an ROIC (specifically designed for two-color operation), which puts out the imagery from both bands simultaneously. The ROIC has variable gain and windowing capabilities. Both FPAs were tested under similar ambient conditions with similar optical components. The FPAs were subjected to a standard series of laboratory performance tests. The advantages and disadvantages of the two material systems for producing medium-format dual-band FPAs are discussed. © 2003 Society of Photo-Optical Instrumentation Engineers.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B00G57K</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D03F15</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001D03F18</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B40B79P</s0>
</fC02>
<fC02 i1="05" i2="3">
<s0>001B80A15H</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>0757K</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>8560G</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>8535B</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>4279P</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>8115H</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Appareillage</s0>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Instrumentation</s0>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Experimental study</s0>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Mercure composé</s0>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Mercury compounds</s0>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Cadmium composé</s0>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Cadmium compounds</s0>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Semiconducteur II-VI</s0>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>II-VI semiconductors</s0>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Plan focal</s0>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Focal planes</s0>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Détecteur IR</s0>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Infrared detectors</s0>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Photodétecteur</s0>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Photodetectors</s0>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Dispositif puits quantique</s0>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Quantum well devices</s0>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Contact ohmique</s0>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Ohmic contacts</s0>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Epitaxie jet moléculaire</s0>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Molecular beam epitaxy</s0>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Croissance semiconducteur</s0>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Semiconductor growth</s0>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Gallium arséniure</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Gallium arsenides</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Aluminium composé</s0>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Aluminium compounds</s0>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Indium composé</s0>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Indium compounds</s0>
</fC03>
<fN21>
<s1>001</s1>
</fN21>
<fN47 i1="01" i2="1">
<s0>0252M000537</s0>
</fN47>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 00C784 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 00C784 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:03-0016835
   |texte=   Comparison of HgCdTe and quantum-well infrared photodetector dual-band focal plane arrays
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024